
Landau Fermi-liquid theory for heavy-fermion compounds. I. Thermodynamics

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1995 J. Phys.: Condens. Matter 7 6523

(http://iopscience.iop.org/0953-8984/7/32/018)

Download details:

IP Address: 171.66.16.151

The article was downloaded on 12/05/2010 at 21:55

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/7/32
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


I. Phys.: Condens. Matter 7 (1995) 6523-6536. Printed io the UK 
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t Ioffe Physical-Technical Institute, Politechnicheskaya 26, St Petersbug 194021, Russia 
t Institute of Physics and Technology. The Ukrainian Academy of Sciences. Akademich- 
eskaya 1,310108 Kharkov, Ukraine 
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Abstract We generalize the Landau Fermi-liquid theory for describing electrons in heavy- 
fermion compounds. The theory gives resuIts in good agreement with microscopic mean-field 
approaches. We study the low-temperamre magnetic properties of the compounds and the 
competition between ferromagnetism and the coherent Kondo state, taking into a m u t  the 
RKKY interaction. 

1. Introduction 

Extensive experimental and theoretical investigations have shown that unusual low- 
temperature properties of heavy-fermion (HF) compounds are related to the interaction 
between conduction electrons and localized electrons of partially filled f shells of rareearth 
or uranium ibns (see, for example, the reviews in [I-71, and references therein). The 
partial occupancy of the f shells is caused by strong repulsion between f electrons. With 
decreasing temperature the interaction between conduction and f electrons plays a more and 
more important role, bringing about the Koado effect and in this way forming the low- 
temperature properties of HF compounds. One has to distinguish two temperature regions 
above and below the Kondo temperature TK. In the region T > TK the Kondo effect is 
incoherent, i.e. the Kondo screening of localized f moments takes place independently of 
each f ion. In that case the HF systems behave as concentrated Kondo impurity systems. To 
describe their properties, one can use the exact results obtained for the impurity Kondo, model 
[6,8,91. In the low-temperature region (T < TK) the Kondo effect becomes coherent. As a 
result some properties of HF compounds differ significantly from properties of concentrated 
Kondo impurity systems. The coherent Kondo effect results in a strong renormalization 
of quasiparticle states near the Fermi surface. The corresponding quasiparticle mass is 
anomalously large: mx N 10'mo. It is worth noting,that, at T << TK, HF compounds 
behave like normal Fermi liquids of very heavy ,quasiparticles and a Fermi tempkrature of 
the order of &. The interaction between conduction and f electrons has an ambivalent 
character. On the one hand the interaction leads to the formation of a singlet ground state 
owing to the Kondo effect. On the other hand it brings about the magnetic RKKY interaction 
between localized magnetic moments of f  electrons that can stimulate long-range magnetic 
order. The competition between the Kondo effect and magnetism is an important feature of 
HF compounds and leads to a rich phase diagram [3]. 

At the present time the mean-field approach based on the 1 / N  expansion of large- 
degeneracy models is the most advanced theory for describing HF compounds [5,1&12]. 
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This approach allows us to explain a number of thermodynamic and kinetic phenomena. 
According to the mean-field approach, at temperatures T << TK, HF compounds behave l i e  
normal Fermi liquids in which quasiparticle states near the Fermi surface are superpositions 
of conduction and f-electron states. Moreover the main contribution to the wavefunctions of 
these states is given by f electrons. This is the reason for the large quasiparticle mass. The 
variational Gutzwiller approximation gives similar results [13]. Unfortunately in spite of 
many achievements the mean-fieId approach faces many significant difficulties in describing 
magnetism in HF compounds. Mathematical complexity is another shortcoming of the 
approach that makes it difficult to understand the physical peculiarities of the compounds. 

We think that a generalization of the Landau Fermi-liquid theory [14,15] for the 
case of electrons in HF compounds could lead to a more profound understanding of the 
compounds and give new opportunities for studying magnetism and kinetic phenomena. The 
Landau phenomenological theory has been used effectively for studying normal nonmagnetic 
metals (see, for example, 1161). magnetic metals [17,18] and superconductors [19]. The 
phenomenological approach to electrons in the impurity Kondo model has been derived 
by Nozikres 1201 in good agreement with the exact results [8,9]. In the present paper we 
develop a phenomenological Fermi-liquid approach to study electrons in HF compounds. 
A general formulation of our approach is given in section 2. In section 3 we apply it to 
investigate a paramagnetic HF. In section 4 we shall study the magnetic properties of HF 
systems at zero temperature. The coexistence of long-range ferromagnetic order and the 
coherent HF state at nonzero temperatures will be studied in section 5. Finally in section 6 
we shall discuss our results. 

A V Goltsev and V V Krasil'nikov 

2. Formulation of the phenomenological approach 

At present it is generally accepted that HF compounds may he described by the lattice 
Anderson model with the Hamiltonian 

According to (2.1) the system under consideration consists of conduction electrons in the 
energy band &(k) with the spin s = 1/2 and spin index a. There are also f electrons in a 
very narrow f band. If the dispersion of the f hand is small enough, then f electrons may 
he considered as localized at lattice sites with the index i on the energy level EJ under the 
Fermi surface, i.e. @ - E ,  =- 0 where p i s  the chemical potential. The hybridization with the 
parameter V ,  which for simplicity is supposed to he independent of I C ,  enables electrons to 
undergo a transition between conduction and f states. The unusual properties of the system 
are related to a large repulsion U between f electrons. Owing to the repulsion the double 
occupancy of the f level is energetically unfavourable. In the limiting case U + 00 and 
p - E, >-> Z J V ~ ~ ~ O  where po is the density of states near the Fermi surface, the lattice 
Anderson model is reduced to the lattice Kondo model. In that case the interaction between 
conduction and f electrons at the site i is equal to Hi., = -JSfi . Sei, where Sfi and S,i 
are the spins of conduction and f electrons, respectively. The local exchange interaction is 
antiferromagnetic, since the Kondo coupling J = 2[VI2/(&f-p) is negative. In the limiting 
case the occupancy Nf of the f level is close to 1 and almost temperature independent. 

Our phenomenological Fermi-liquid approach to electrons in HF compounds is based 
on two assumptions. The former is related to the ground-state structure. That is we suppose 
that at T << TK the wavefunctions of a quasiparticle with the wavenumber k and spin index 
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OL near the Fermi surface is a superposition of Bloch wavefunctions of electron states in the 
conduction band and narrow f band: 

Wdk) = A C k W k )  + &rsVJ(k). (2.2) 

Secondly we suppose that the number of electrons in the narrow f band is fixed. For that 

As the system consists of 
conduction and f electrons we introduce two functions N&(k) and N$(k) which describes a 
distribution of electrons over states in the conduction and f bands. In terms of a microscopic 
theory these functions may be defined as 

N$(k) = (C&Cuk) Nib(k) = (fs+kfak)l (2 .3~)  

Assumption (2.2) demands an introduction of non-diagonal components of the distribution 
function 

N$(k) = (C&fuk) N$(k) = (f+&ck) = (NB:(k))*. (2.3b) 

Thus the distribution function N of the system under consideration is a matrix N$(k) with 
both band indices a ,  b = c, f and spin indices 01, p. It is convenient to write this matrix in 
the block form 

~ ~ purpose we introduce an additional chemical potential A. 
Let us introduce a distribution function of electrons. 

For spin S = 1/2, each block is a spin matrix 2 x 2. According to the general principles of 
the Landau theory [19] the entropy of a non-equilibrium electron liquid is equal to 

S ( N ) = - S p ( N I n N + ( l - N ) l n ( l - N ) )  (2.5) 

where the trace is taken over all indices. Now we introduce the total energy functional 

E ( N )  = C(E(~)N;J~) + c f ~ , f , c k ) )  
uk 

where N. is the number of unit cells in the lattice. The functional includes different types 
of interaction. Kz;! describes potential  and^ exchange interactions between conduction 
electrons. K$i: describes potential and direct exchange interactions between f electrons. 
KaT${ and K$$ describe potential and exchange interactions between conduction and f 
electrons. As an investigation of the total energy functional (2.6) is too complicated, we 
shall study a simpler case when only the exchange interaction between conduction and f 
electrons is important. Then we have 

EO" = z ( ~ ( k ) N L ( k )  + ~ . f N , f , ( k ) )  
ak 
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where the interaction functions F and K have the following spin structure: 

A V Goltsev and V V Krusil'nikov 

Fq.g~(k7  P )  = G ( k  p ) c m g u y 6  

%y .@6(kP)  = p(k,p)&g6y6 (2.8) 

where a& j = x ,  y ,  z, are the Pauli matrices. In a general case the interaction function 
Key.g6(k,p) contains a term K(k,p)cmgc,6 which leads to a certain renormalization of 
magnetic properties. 

The free energy of the system has the form 

D ( N )  = E ( N )  - T S ( N )  - / I N ,  -AN,. (2.9) 
The chemical potential p determines the total number of conduction and f electrons per unit 
cell: 

The additional chemical potential A determines the number o f f  electrons per unit cell: 
1 

N f  = - N , f ( k )  = constant. 
uk 

(2.11) 

Actually the parameter A leads to a renormalization of the f-level energy. We define 

E, = E f  -A. (2.12) 

Therefore it is convenient to define the energy functional in the form 

E ( N )  = E ( N )  -AN,. (2.13) 

To find the matrix of quasiparticle energies 

(2.14) 

it is necessary to vary E ( N )  to N .  So we obtain 

Minimizing the free energy R ( N )  with respect to N ,  one obtains the following matrix 
equation: 

(2.16) 
where 1 is the unit matrix with the matrix elements S,pS,h. Since SS/GN = In(N-' - I), 
an equilibrium distribution matrix N has the form 

(2.17) 

The substitution of this solution into (2.15) gives a set of integral equations which enables 
us to find the matrix of quasiparticle energies (2.14). To determine self-consistently all 
unknown physical parameters we must take into account equations (2.10) and (2.11). 

6 R ( N ) / 6 N  = E - T S S / S N  - p1 = 0 

N = (exp((& - p I ) / T )  +I)-'. 
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3. Paramagnetic heavy-fermion state 

As an example we consider the equilibrium properties of the system in a paramagnetic state. 
In that case the matrix of quasiparticle energies has a trivial dependence on the spin indices, 
i.e. E$ = &'*Sup and N$ = N"'8.p. The substitution of these matrices into (2.15) gives 

&(k) = E @ )  €f(k) = Ef 

For simplicity we shall study only an isotropic system. In the case of the isotropic Fermi 
surface, the interaction functions G(k ,  p )  and p(k, p )  in (2.8) depend only on the angle 
fi between the wavenumbers k and p .  Therefore we can use the expansion in Legendre 
polynomials: 

m 

G ( k , p )  = c ( 2 1 +  l)GlPr(costF) 
1=0 

m 

d k , p )  = E@+ 1)vlPdcOsfi). (3.2) 
1=0 

As the matrix Nub does not depend on the direction of the wavenumber k, the matrix E 

takes the form 

where we introduce a parameter 

b = 2 N c f  (k). 
Nu k 

(3.3) 

(3.4) 

Below for simplicity we shall suppose that the parameter b is real, i.e. b* = b. The matrix 
(3.3) may be written in the diagonal form 

(3.5) 

by using a unitary transformation 

(3.6) 

The angle 0k E [O, a] and two quasiparticle energy bands E l k  and EZk are determined by 
the following equations: 

Elk=Zf-bCOt&= f ( ~ ~ - ! - E ( k ) - [ ( E ~ - 8 ( k ) ) 2 + 4 b 2 ] 1 ' 2 )  

& k = Z f f b b n 6 k  = i ( ; f + E ( k )  + [ ( E f  -E(k))2+4b2]"2). (3.7) 
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According to (2.17) the dishibution function N may be written in the form 

A V Goltsev and V V Krasil'nikov 

(3.8a) 

where f ( E )  = (exp((E - p ) / T )  + I)-?. Multiplying the matrices, one obtains 

N C ( k )  = f(Eik)COS'Bk +f(&k)Sin'& 
N f  (k) = f ( E 1 k )  sinZBk + f ( E a )  cos' 0, 

Ncf  (IC) = N f ' ( k )  = l ( f ( E 2 k )  - f(Elk)) sin(26'k). 
(3.8b) 

Therefore the paramagnetic state of the system is determined completely by three parameters 
p, E, and b. To find the parameters we must solve three equations @IO), (2.11) and (3.4). 
Using the transformation (3.8). they may be written in the form 

(3.9) 

In deriving the latter equation we have used a useful equality 

Ezk - Elk = 2b/sin(2&). (3.10) 

The multiplier 2 on the right-hand side of equations (3.9) is a result of summing over two 
spin states. Comparing equations (3.9) with the mean-field results [5,21], we find that these 
equations are completely equivalent to the mean-field equations which describe the coherent 
Kondo state if the parameter yo is chosen to be equal to the Kondo coupling energy J ,  i.e. 
'po = J < 0. However, it should be noted that, when we use a Landau-like theory to 
describe a metal, the Landau parameters y~ and GI must be found from experimental data. 
The comparison of J with a value of 90 obtained from experimental data can give very 
interesting information on renormalization of the interaction parameters due to, for example, 
lattice effects. 

It is well known that at 'po < 0 the set of equations (3.9) has a non-trivial solution 
with b # 0 at temperatures T < TK. ~ If the total number NI of electrons is lower than 2, 
then at T = 0 the lower quasiparticle band Elk  is partially filled. AI1 calculations may be 
performed to the end if the conduction band &(]E) is flat, i.e. p(&) = PO. In that case, at 
T = 0, one obtains the well known results 

TO =zf - P = ~ ~ x P ( - ~ / ( ~ I ~ o I P O ) )  
b' = Nj%/2po (3.11) 
m'lma = p*/po = cos-' OF = 1 + Nf/ZTopo >> 1 

where p. 2: (NI - N ~ ) / 2 p o  and Tap0 < 1. It is the mass enhancement (3.11) that gave them 
the name 'heavy fermions'. For HF compounds at low temperatures the low-temperature 
Kondo scale TO plays the same role as the Fermi temperature in normal metals. The 
enhancement of the density of states results in a large linear temperature coefficient of the 
heat capacity y = 2x2p*/3. According to (3.11), experimental data for y allow us to 
detehnine the Landau parameter (00. 



Landau theoryof heavy-fermion compounds 6529~ '~ 

4. Magnetic susceptibility 

In an external magnetic field H conduction and f electrons obtain additional contributions 
to their energies -;g&BHU and - i g f p B H u ,  respectively. Then it is handy to write the 
matrix of quasiparticle energies (2.15) in the form 

€&(IC) = &(k)8@ - h'(k)U@ 
E@(k) = "&, - hf(lc)%, 

E$(IC.O = b(W8mfl 

(4.1) f 

where we introduce 

The parameters hc(IC) and hf(k) are the effective magnetic fields which affect conduction 
and f electrons. They include an additional field produced by surrounding spins'owing to 
the exchange interaction. 

Let H be directed along the z axis. It is clear that the effective fields h'(k) and hf (k) 
are also parallel to the axis. In the isotropic case the parameters hC, hf and b do not depend 
on I C .  Using (3.2) we can rewrite equations (4.2) for the z components of the effective field 
as follows: 

(4.3) 

where cy = f l  for upward and downward spins, respectively. The distribution function 
N$@) is related to the matrix of quasiparticle energies (4.1) by equation (2.17). 

The total magnetic moment per unit cell is equal to the sum of magnetic moments of 
conduction and f electrons: 

(4.4) 

Comparing (4.3) and (4.4), one obtains the following useful relation between the fields he 
and h f  and total moment M,: 

(4.5) I zgfPBhC -t fgcKBhf = igcgf  P i H  - GoMt. 
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Thus we can conclude that in an external magnetic field the equilibrium state is determined 
completely by five parameters p, &J, 6, hC and h f .  To find the parameters we must solve 
the set of the algebraic equations (2.10), (2.11) and (4.3). 

First of all we note that, as the effective fields hc and hf are parallel to the z axis, 
the matrix of quasiparticle energies (4.1) and the distribution matrix (2.17) are diagonal 
matrices with respect to spin indices, i.e. .$ = &:hSap and N$ = N,"*S,p. According to 
(4.1) the matrix elements E$ have the form 

A V Goltsev and V V Kraril'nikov 

As the matrix &:b looks like the matrix (3.3), we can transform it to the diagonal form (3 .3,  
using a unitary transfonnation Uh (3.6). There is only one difference fiom the case H = 0. 
Namely, at H # 0, the transfonnation angle O h  depends on the spin index 01. Generalizing 
equations (3.7), at H # 0, we obtain that the quasiparticle energies have the form 

E l k  = ZL - b cot&, = &(EL + ~ ; ( k )  - [ ( E L  - ~;(k))' + 4621'/2) 

E z h  =EL+btanSk, = ;(iL+&;(k)+[(EL -~ ; (k ) )~+46* ] ' / ' ) .  (4.7) 

In the same way we generalize equations (3.8) for the distribution matrix NEb. That is, this 
matrix m.ay be written in the diagonal form ( 3 . 8 ~ )  by using the unitary transformation Uku. 
The matrix elements NEb me determined by equations (3.8b) where we have to replace E l k ,  
E% and @k by Elka, E2ku and 6,. Substituting these results into equations (2.10), (2.11) 
and (4.3). we obtain the following complete set of algebraic equations: 

which enables us to find the temperature and magnetic field dependences of five unknown 
parameters p, Ef, 6, he and hf at fixed parameters Nt and NI. Then we can find A&(?', H )  
and other physical parameters. Unfortunately in the general case this problem is too difficult. 
That is why we shall study only the case of low temperatures T << To and low magnetic 
fields p~ H << TO. Solving equations (4.8) becomes simpler if we note that, in accordance 
with the results in [ X I ,  magnetic field corrections to the chemical potential p, the effective 
f-level energy ZJ and the parameter b are second order in H .  Therefore, in order to study 
a linear response in a magnetic field, we can neglect the effect of H on I.L. Zf and b. The 
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problem is reduced to the determination of the effective fields hC and hf to first order in 
H .  The change in the quasiparticle energies in the external magnetic field H is given by 

Here we have used the equalities 

(4.10) 

which follow from equations (3.7). As the energy gap between the upper band E2k and the 
lower band Elk is of the order of TO, at temperatures T <( To we can neglect the occupancy 
of the upper band, i.e. f(Ezk.) = 0. The substitution of equations (4.9) into equations (4.8) 
allows us to write the two latter equations in (4.8) in the form 

h‘=~fgcPsH - - CU,(f’(Eik)Sin2eksEikn + f<Eik)8(Sin2eka)) (4.11~) Go 

Nu ark 

(4.11b) Go hf +gfPBH - - Cun(f’(Elk)COS2ek8Eik. + f(&)8(COSZ@ku)) 
Nu uk 

where f ’ ( E )  = df(E)/dE. Using (4.7), one can easily find that 

(4.12) 

The substitution of equations (4.9) and (4.12) into (4.1 1) gives a set of linear equations for 
finding the effective fields hf and hC: 

Z 1 8(sinzekcr) = -s(cos2eku) = sin . 2  ekm -sin ek = -um(hf - hC)sin’(Z8k). 
4b 

hC = fg+BH - Ah‘ - Bhf 

hf = ig,rp, H - Ch‘ - Dhf (4.13) 

where we introduce the following coefficients: 

(4.14) 
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It is not difficult to solve equations (4.13). Then we obtain 

A V Golfsev and V V Krasil'nikov 

(4.15) 

The coefficients A, E and C may be calculated in the case p ( ~ )  = PO. For that purpose 
we use the following transformation from the summation over k to the integration over the 
energy variable E = Elk: 

(4.16) 

where the function cos'8~ has to be considered as a function of the variable E = E l k .  One 
can prove the following equalities: 

(4 .17~)  
(2 - E)' + b' 

&" d 
dE-(f(E) sin2&) = -2GopobZ 

OPo Lm,, dE 
A = -2G 

(4 .17~)  

where E ~ "  and E,,,, are the energies of the bottom and top of the lower quasiparticle band 
Elk. 

First of all we shall discuss the magnetic properties at zero temperature. In this case 
we have f(Efin) = 1,  f(Em,) = 0, f'(E) = -6(E - p) and (ZJ - Emin)' m p2. Since 
p >> b, equations (4.17) give 

A = 2Gopo(b/p)' 
C = 2GopoU - (blp)') 2Gopo (4.18) 

B = 2Gopo(tan2& - I + (b/p)') N GoNf/To 

where we have used the results (3.11) for the parameters b and cos'fJp and the inequality 
b2/p2 - Top0 << 1. It is natural to suppose that the Landau parameter Go which 
characterizes the antiferromagnetic interaction between conduction and f electrons, is much 
smaller than the conduction band width, i.e. Gopo << 1. However, the ratio GolTo is of 
arbitrary values. So the coefficients A, B and C satisfy the inequalities 

A < < C < B  A<<1 C<<1. (4.19) 

It is important to note that these inequalities are also valid at nonzero temperatures. Using 
the results (4.18), we can find the fields he and hf at T = 0: 

(4.20) 
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where we introduce the parameter 

T, = 2NfG;po.  (4.21) 

The physical meaning of T, will be discussed briefly below. The result (4.20) has interesting 
physical features. Let us consider the region of the Landau parameters 90 and Go where 
TO > T, but Go > TOgJNfgf - TO. This region is sufliciently broad. Specifically it 
includes the values Go - 1901 - IJI. In this region the effective field h f  is positive and hC 
is negative. This meark that, while hf is parallel to the extemal magnetic field H ,  the field 
hC is antiparallel to H .  This result becomes clear if we note that it is brought about by 
the antiferromagnetic exchange interaction (2.8) between conduction and f electrons. In the 
external magnetic field H ,  f electrons are arranged parallel to this field. Spins of conduction 
electrons are also parallel to H if the antiferromagnetic interaction with f elecbons is 
neglected. The antiferromagnetic interaction tries to overturn conduction electron spins. At 
Go > TO the state with downward conduction electron spins is energetically more favourable. 

In order to find the total magnetic moment Mr we substitute equations (4.15) into 
equality (4.3, taking into account inequality (4.19). Simple calculations give 

Therefore the magnetic susceptibility is 

(4.22) 

(4.23) 

As at T = 0 the coefficients B and C~are  determined by equations (4.18), we obtain 

In the case when Go = 0 we have T, = 0. Then equation (4.24) coincides with the 
mean-field results [5] for zero-temperature susceptibility of HF compounds. At nonzero Go 
the result (4.24) has been obtained in [22] on the basis of an extended Coqblin-Schrieffer 
model which enables us to take into account the RKKY interaction. 

Let us discuss the result (4.23). As the susceptibility must be positive, the paramagnetic 
HF state is stable only in the region of the Landau parameters and Go where TO > T,. 
The physical meaning of the parameter T, becomes clear if we note that according to a 
microscopic approach the parameter T, is the characteristic energy of the RKKY interaction 
mediated by conduction electrons between localized f spins. This enables us to understand 
the origin of the instability at To = T,. That is, in the region TO < T, the RKKY interaction 
is strong enough to break the coherent HF state. At T = 0 a stable-moment state with long- 
range magnetic order is formed. In this region of the Landau parameters the Kondo effect 
is incoherent at all temperatures including T = 0. This problem has been discussed in 
many papers (see, for example, [1,3,22], and references therein). In the framework of 
our phenomenological approach this means that the wavefunctions of quasipaaicles near 
the Fermi surface are not equal to the wavefunctions (2.2). Then the non-diagonal matrix 
elements Nub of the distribution matrix are equal to zero at all temperatures. In that case 
our phenomenological theory becomes equivalent to the usual Landau Fermi-liquid theory 
of two band models (see, for example, [18]). 
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5. Ferromagnetic phase transition 

According to equation (4.23) the temperature dependence of the magnetic susceptibility x 
is determined by the parameters B and C. Equations (4.17~) and (4.17b) show that the 
temperature dependence of C is exponentially weak, i.e. C = 2Gopo + O(exp(-p/T)). 
To find the temperature dependence of B we must calculate the integral (4.17~). As 
tanZ Sk = b2 f (Z - E)2 and C << B ,  at T << TO we obtain 

(5.1) 

A V Goltsev and V V Krusilhikov 

B = 2G0pob2(Ef - p)-*(l+ xzT2(Z - p)-') + O(T4/T$). 

According to [21] the parameters Ef and b have the following temperature dependences: 

b = b(0)(1--$ ($7) 
E f - p = T o ( 1 + $ ( ; ) z )  

This enables us to find B :  

(5.3) 

Consequently the magnetic susceptibility (4.23) is given by 

Let TO be slightly larger than T,, i.e. 0 c TO - T, << TO. As we have discussed above, at 
T = 0 the system is in  the paramagnetic HF state. However, with increasing temperature 
the susceptibility increases and diverges at the critical temperature 

x 
This singularity gives evidence of a ferromagnetic instability of the paramagnetic HF state. 
Let us show that at T > T, the ferromagnetism and coherent HF state coexist. This means 
that both the spontaneous magnetic moment and the parameter b in (4.3) are nonzero. It is 
obvious that the spontaneous magnetic moments of conduction and f electrons me related 
to the rise in spontaneous effective fields hC and hf (4.3) at zero external magnetic field. 
Therefore we face the following problem. Is there a nontrivial solution of equations (4.8) 
with nonzero parameters 6, hC and hf at temperatures T > T, and H = O? To first order 
in hC and hf ,  equations (4.8) are reduced to equations (4.13). These equations have a 
nontrivial solution above a certain critical temperature at which the determinant of the set 
of the equations is equal to zero. Taking into account the inequality (4.19), this condition 
may be written in the form 

I - B C = O  (5.6) 
which is completely equivalent to the divergency condition of the susceptibility of the 
magnetic susceptibility (4.23) or (5.4). Consequently, in a certain temperature interval 
above T, the coexistence of long-range ferromagnetic order and the coherent HF state is 
possible. Such a ferromagnetic HF state has been previously discussed in the framework of 
an extended CoqblinSchrieffer model [22]. Of course with increasing temperature above 
a certain critical temperature the ferromagnetic order is broken and the system undergoes a 
phase transition into a paramagnetic state. 
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6. Discussion and conclusions 

In the present paper we have generalized the Landau Fermi-liquid theory for describing 
electrons in HF compounds. Our phenomenological theory has been based on two 
assumptions. First we have supposed that the quasiparticie wavefunctions near the Fermi 
surface are superpositions of the wavefunctions of conduction and f electrons. This 
assumption has enabled us to introduce the distribution matrix N$(k)  with both the band 
indices a, b = c, f and spin indices a, p.  The diagonal elements N$(k) describe the 
distribution of electrons over stat= in the conduction band and narrow f band. The 
nondiagonal elements N$(k) and N$(k) describe the formation of a phase coherence 
between electron states in the bands, which is the main assumption of the mean-field 
approach [5,10-121. That is why good agreement between our phenomenological theory 
and the mean-field approach is natural. The correspondence between the mean-field 
approximation and the Landau-like Fermi liquid theory of several magnetic impurity models 
has been discussed in detail in [23] where it has been shown that the application of the 
mean-field theory to these models gives asymptotically exact results at T -+ 0 and H + 0. 

Secondly we have assumed that the number o f f  electrons is fixed. We have introduced 
this condition by using an additional chemical potential o f f  electrons that actually results 
in a renormalization of the f-level energy. On the basis of an exact microscopic approach 
to the periodic Anderson model in the limiting case U + co and w - &f > iilVIZpo, 
fixing the f-level occupancy is imposed by special constraints on each f ion. However, in 
the mean-field approximation [5, 10.111 the constraints are also replaced by fixing the total 
number of f electrons using an additional chemical potential. 

Although our Landau-like Fermi-liquid approach and mean-field approach based on 
largedegeneracy models have a general basis, there are some significant differences. So 
far the account of the RKKY interaction in the framework of the 1 / N  expansion applied to 
the conventional slave boson or Coqblin-Schrieffer models is an unsolved problem because 
it demands taking into account higher orders of the 1/N expansion. The problem may be 
partly solved by using an extended CoqblinSchrieffer model which enables the magnetism 
of HF compounds to be described [23]. Nevertheless these difficulties reshict significantly 
possibilities of the mean-field approach for describing magnetic phase transitions. Unlike 
that approach, our Landau-like Fermi-liquid theory allows us to take into account, on the 
same basis, different types of interaction, including magnetic interactions. In order to show 
this, we have studied the ferromagnetic instability of HF compounds. It has been found 
that at T = 0 the coexistence of ferromagnetism and the coherent HF state is impossible. 
It becomes possible in a certain temperature range above zero temperature if the system 
is sufficiently close to the ferromagnetic instability. Moreover the Landau Fenn-liquid 
approach may be used for describing kinetic and relaxation phenomena in HF compounds. 
This problem will be studied in a forthcoming paper. 
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